

PSPDFKit

Products

Solutions

Aviation

Construction

Education

Legal

Government

Financial

Healthcare

Life Sciences

Intelligent Document Processing:Automate workflows with an AI-based intelligent document processing (IDP) SDK

Documentation

Resources

Resources

Blog
Explore the latest insights, products, tutorials, & more

Releases
Learn about the latest product changes and features

Customer Stories
See how our customers drive success with our SDKs

Company News
Learn more about us, our team, and our culture

Webinars
Join the next live demo or watch on-demand webinars

Compare
See how we measure up to the competition

Get Help

Technical Support

Contact Sales

Customer Portal

Pricing

Get Started

Contact Sales

Contact Sales

Contact Sales

T

Blog Post

How to Persist Zoom While Scrolling through a Document Using the PSPDFKit Android Library

Ferdinand Bada

Android

How To

In this brief tutorial, you’ll learn how to persist a zoom level across an entire PDF document during scrolling. Say you have a user who wants to have a consistent feel to their PDFS. Or maybe your user is visually impaired. While it’s nice to have the ability to zoom in and out as desired, in both scenarios, it’d be even better for your app to support a persistent zoom level to ensure the best user experience. To learn how to implement this functionality, read on.

Requirements

To get started, you’ll need:

	
Android Studio — The official integrated development environment (IDE) for Android.

	
PSPDFKit Android Catalog Repository — This repository has some code you’ll build on, so make sure to clone and run it before proceeding.

Persisting Zoom

Once you have Catalog up and running, navigate to app/src/main/java/com/pspdfkit/catalog/examples/kotlin/ZoomExample.kt, which is the file you’ll be modifying. More specifically, you’ll be modifying the ZoomExampleActivity class in the file. You can see how this example works by installing the app and opening Zoom Example in your device or emulator.

To persist the zoom, you need to do the following things:

	
Listen to page changes in the document as a user scrolls between the pages. For this, you’ll use DocumentListener.

	
Keep track of the scale factor once the zoom has been modified.

	
Apply the zoom to the document after the page has changed. For this, you’ll use the zoomTo method.

	
Finally, clean up.

In the ZoomExampleActivity class, paste the following as a class member variable:

private var documentListener:DocumentListener? = null

In the companion object, add the following constant:

private const val ZOOM_DURATION = 100L

The listener above will be used to track the changes while the ZOOM_DURATION is a constant to determine how long the zoom animation should take. Next, add the following method in the ZoomExampleActivity class:

private fun persistZoom() {
 val fragment = requirePdfFragment()
 var zoom = 1.0f

 documentListener = object : DocumentListener {
 override fun onPageChanged(document: PdfDocument, pageIndex: Int) {
 val size = fragment.document?.getPageSize(pageIndex)
 fragment.zoomTo(0, size?.height?.toInt() ?: 0, pageIndex, zoom, ZOOM_DURATION)
 }

 override fun onDocumentZoomed(document: PdfDocument, pageIndex: Int, scaleFactor: Float) {
 zoom = scaleFactor
 }
 }

 documentListener?.let { listener ->
 fragment.addDocumentListener(listener)
 }
 }

In the method above, you get PdfFragment and declare a zoom variable to track the current zoom factor. The zoom factor is always updated once the document zoom has changed in the onDocumentZoomed method. You then set the zoom on the document using the onPageChanged method. By setting the zoom as above, the document will always zoom to the top-left corner. Then, you call this method at the end of onDocumentLoaded. To have the document zoom to the center, for example, you can use the following code instead:

fragment.zoomTo((size?.width?.toInt() ?: 0) / 2, (size?.height?.toInt() ?: 0) / 2, pageIndex, zoom, ZOOM_DURATION)

Feel free to play around with the values above to get the desired behavior.

Finally, inside the onDestroy method, clean up as follows to remove the listener you added:

override fun onDestroy() {
 super.onDestroy()
 ...

 documentListener?.let { listener ->
 requirePdfFragment().removeDocumentListener(listener)
 }
 }

Installing Catalog again in a device or emulator will now show you a consistent zoom across the document as you swipe from one page to another.

Conclusion

In this post, you learned how to persist the zoom across a document as a user is scrolling between pages. If you hit any snags while trying to implement any of the steps, don’t hesitate to reach out to our Support team for help.

At PSPDFKit, we offer a commercial, feature-rich, and completely customizable Android PDF library that’s easy to integrate and comes with well-documented APIs to handle advanced use cases. Try it for free, or visit our demo to see it in action.

Share Post

Free 60-Day Trial

Try PSPDFKit in your app today.

Free Trial

Related Articles

Explore more

PRODUCTS | Android • Releases

Android 2024.1 Update: Advanced Content Editing and Digital Signatures, Plus Expanded Jetpack Compose Support

CUSTOMER STORIES | Case Study • React Native • iOS • Android

Case Study: How Trinoor Uses PSPDFKit to Drive Operational Excellence with Flexible, Mobile Applications for the Energy and Utilities Market

PRODUCTS | Android • Releases

PSPDFKit 8.9 for Android Revamps Advanced Digital Signatures

PDF SDK

iOS

Android

Web

MAUI

.NET for iOS & Android

Windows

Mac Catalyst

React Native

Flutter

Electron

Salesforce

SharePoint

Microsoft OneDrive

Microsoft Teams

visionOS

New

Server

GdPicture.NET SDK

Library for Java

Node.js

XtractFlow

Gen AI

Cloud

Document Engine

PDF API Tools

Login for API Tools

Solutions

Aviation

Construction

Education

Legal

Government

Financial

Healthcare

Intelligent Processing

Community

Developer Portal

Customer Portal

Technical Support

Blog

Newsletter

Company

About

Team

Careers

We’re hiring!

Security

Contact Us

Legal

Pricing

Partners

Try Our PDF Apps

Copyright 2010-2024 PSPDFKit GmbH. All Rights Reserved.

