











PSPDFKit



Products





Solutions




Aviation






Construction






Education






Legal






Government






Financial






Healthcare






Life Sciences







Intelligent Document Processing:Automate workflows with an AI-based intelligent document processing (IDP) SDK











Documentation





Resources




Resources








Blog
Explore the latest insights, products, tutorials, & more 









Releases
Learn about the latest product changes and features









Customer Stories
See how our customers drive success with our SDKs












Company News
Learn more about us, our team, and our culture









Webinars
Join the next live demo or watch on-demand webinars









Compare
See how we measure up to the competition













Get Help







Technical Support






Contact Sales






Customer Portal


















Pricing




Get Started


Contact Sales


Contact Sales



Contact Sales




T


























iOS


Guides


User Interface


PDF View Controller



Embedding PDF View Controllers on iOS


PSPDFKit is designed to work well with UIKit’s container view controller API so that you can easily embed a PDFViewController inside your custom container view controller implementation. The following steps will guide you through the setup.

Add the PDFViewController as a Child View Controller

First you need to make sure the PDFViewController is properly added to your container view controller. A good guide on how to do this is Apple’s Implementing a Container View Controller. In our case, we want to add a PDF view controller fullscreen inside the container view controller. So our code to do that looks like this:


let containerController = ... // This is your custom container view controller.
let pdfController = ... // This is the configured instance of `PDFViewController` that you want to add.

containerController.addChild(pdfController)
pdfController.view.frame = containerController.view.bounds // Make the `pdfController` fullscreen in your container controller.
pdfController.view.autoresizingMask = [.flexibleWidth, .flexibleHeight] // Ensure the `pdfController` resizes along with your container controller.
containerController.view.addSubview(pdfController.view)
pdfController.didMove(toParent: containerController)
UIViewController *containerController = ...; // This is your custom container view controller.
PSPDFViewController *pdfController = ...; // This is the configured instance of `PSPDFViewController` that you want to add.

[containerController addChildViewController:pdfController];
pdfController.view.frame = containerController.view.bounds; // Make the `pdfController` fullscreen in your container controller.
pdfController.view.autoresizingMask = (UIViewAutoresizingFlexibleWidth | UIViewAutoresizingFlexibleHeight); // Ensure the `pdfController` resizes along with your container controller.
[containerController.view addSubview:pdfController.view];
[pdfController didMoveToParentViewController:containerController];


For the most part, this information is from Figure 5-1 from the above-mentioned guide, but in addition, we make sure that the controller resizes properly whenever the container view controller’s view changes its bounds. If you are using auto layout inside your container view controller, you may need to alter the code to position and resize the PDF controller correctly.

Non-Fullscreen Presentation

Sometimes the size of the embedded PDFViewController doesn’t match the size of the container controller. This is usually the case when the container controller adds some decorations around PDFViewController (e.g. margins, custom navigation bars, or toolbars).

In such a case, you need to be aware that it’s the container’s responsibility to correctly define the size of its child controllers. Here are requirements you need to follow.

Initialization

Make sure the correct frame is set on PDFViewController’s view before you add it to your view hierarchy. Changing the size of PDFViewController’s view during the appearance transition might cause UI issues.

If your container has a complex layout, it might be easier to add the PDFViewController after your container lays out its subviews (viewDidLayoutSubviews()), so that you’ll already know the correct frame for PDFViewController’s view.

Size Transitions

Make sure your container controller implements the following:


func size(forChildContentContainer container: UIContentContainer, withParentContainerSize parentSize: CGSize) -> CGSize
- (CGSize)sizeForChildContentContainer:(id<UIContentContainer>)container withParentContainerSize:(CGSize)parentSize;


It should also return the correct size for PDFViewController. This method is called during size transitions (including rotations), and the result is then passed to PDFViewController in the following:


func viewWillTransition(to size: CGSize, with coordinator: UIViewControllerTransitionCoordinator)
- (void)viewWillTransitionToSize:(CGSize)size withTransitionCoordinator:(id<UIViewControllerTransitionCoordinator>)coordinator;


PDFViewController uses this size to properly configure itself. Neglecting this might cause layout glitches and break automatic page mode.

Custom Container View Controllers and UINavigationController

If you integrate the PDFViewController inside your custom view controller, you can still add your custom view controller inside a navigation controller afterward. However, there are a couple of things to keep in mind.

The PDFViewController will no longer take care of the navigation bar, as the immediate child of the navigation controller is responsible for doing this. You can set useParentNavigationBar to true in the PDFConfiguration and we will do our best to update the navigation bar for you. However, this may not work well in all edge cases and we may require your help.

If you configure the PDFViewController so that it should hide the navigation bar when the user taps on the screen (PDFConfiguration.shouldHideNavigationBarWithUserInterface and PDFConfiguration.userInterfaceViewMode) and you are using opaque navigation bars (i.e. set UINavigationBar.translucent to false), make sure to also set extendedLayoutIncludesOpaqueBars to true on your container view controller as well. Otherwise, the view of your container view controller will be resized every time the navigation bar changes its visibility state. This also means that the PDFViewController will get resized in the same way, resulting in an up/down jump of the pages that are currently visible.

In general, when adding a custom container view controller between any kind of UIKit container view controllers (such as UINavigationController, UITabBarController, or UISplitViewController), make sure that the view controller hierarchy is set up correctly. The PDFViewController’s parent view controller should always be your container view controller in such a case. You should not set the PDF view controller to become a child of the UIKit controller but rather embed it into your custom container view controller’s view hierarchy.

Also keep in mind that everything PDFViewController would normally do when interacting with the default UIKit container view controllers (e.g. automatically managing navigation bar visibility), it no longer does when it’s embedded in a custom container view controller. From the perspective of the PDFViewController, your custom container view controller is now responsible for the communication and proper handling of its parent UIKit container view controller.

Samples

If you want to look through more code, there are a couple of samples available in the Catalog under the ViewController Customization section.

























PDF SDK


iOS


Android


Web


MAUI


.NET for iOS & Android


Windows


Mac Catalyst


React Native


Flutter


Electron


Salesforce


SharePoint


Microsoft OneDrive


Microsoft Teams


visionOS

New






Server


GdPicture.NET SDK


Library for Java


Node.js


XtractFlow

Gen AI






Cloud


Document Engine


PDF API Tools


Login for API Tools





Solutions


Aviation


Construction


Education


Legal


Government


Financial


Healthcare


Intelligent Processing





Community



Developer Portal


Customer Portal


Technical Support


Blog


Newsletter





Company


About


Team


Careers

We’re hiring!



Security


Contact Us


Legal


Pricing


Partners







Try Our PDF Apps


















Copyright 2010-2024 PSPDFKit GmbH. All Rights Reserved.









