











PSPDFKit



Products





Solutions




Aviation






Construction






Education






Legal






Government






Financial






Healthcare






Life Sciences







Intelligent Document Processing:Automate workflows with an AI-based intelligent document processing (IDP) SDK











Documentation





Resources




Resources








Blog
Explore the latest insights, products, tutorials, & more 









Releases
Learn about the latest product changes and features









Customer Stories
See how our customers drive success with our SDKs












Company News
Learn more about us, our team, and our culture









Webinars
Join the next live demo or watch on-demand webinars









Compare
See how we measure up to the competition













Get Help







Technical Support






Contact Sales






Customer Portal


















Pricing




Get Started


Contact Sales


Contact Sales



Contact Sales




T


























iOS


Guides


Viewer



JavaScript-Compatible iOS PDF Viewer


The PDF specification includes JavaScript support based on JavaScript version 1.5 of ISO-16262 (formerly known as ECMAScript).

PDF JavaScript is currently supported on our iOS and Android SDKs, as well as on Web Standalone and Electron.

See also: How to Program a Calculator in a PDF

Use

There are many places in a PDF where JavaScript can be used.

Document-Level Scripts: These scripts are executed when the document is open. To add a new document-level script in Adobe Acrobat, go to Tools and search for Document JavaScripts. A dialog box will open, which is where you can add a new document-level script to the PDF file.


You can retrieve the document in a document-level script by accessing the event.target property, like this:

var document = event.target;
var textField = document.getField('MyTextField');
// Do things with `textField`.



This code snippet will get a reference to the form field with the name MyTextField in the document.

Document-level scripts are useful for reusing information and functions that will be accessed from several action scripts. For more information about document-level scripts, read the Doc/Open subsection on page 363 of the JavaScript™ for Acrobat® API Reference guide.

Action Scripts: Form fields and annotations can be extended with JavaScript actions. A JavaScript action is represented by the class JavaScriptAction. You can initialize a JavaScriptAction with a script and associate it with a form element and a particular trigger event. For more information about PDF actions, read our PDF actions guide.

You can set regular action scripts in Adobe Acrobat too. Open the Prepare Form tool and double-click on a form field. Click on the Actions tab and choose Run a JavaScript from the Select Action dropdown box.


One interesting set of JavaScript actions is that of the format, validation, and calculation actions. A format action modifies the appearance of a form element so that its contents are shown in a particular way (like a date or time or the number of decimal places). A validation action validates the contents of a form field, ensuring they are always correct. A calculation action is invoked after certain events, like setting a form field value, and lets you establish relationships between form elements and perform calculations.

Disabling JavaScript

JavaScript can be disabled on individual documents. To do this, set the javaScriptStatus property like this:


document.javaScriptStatus = .disabled
document.javaScriptStatus = PSPDFJavaScriptStatusDisabled;


ℹ️ Note: In addition to processing forms within the document, JavaScript might also play an important role in other areas described in the Supported Features section. Disabling all JavaScript in documents that rely on these features could make it unusable. Consider conditionally disabling actions using pdfViewController(_:shouldExecute:).



Example of How to Create a JavaScript-Enabled PDF Document Using Adobe Acrobat


Supported Features

PSPDFKit has basic support for the most common JavaScript API methods and properties, detailed below.




Each of the methods listed below may support only a subset of the features and parameters detailed in the specification. We therefore advise you to test your JavaScript-enabled documents thoroughly. Please contact support if you run into issues or limitations.




App
	
alert, launchURL, viewerVersion



Console
	
println



Doc
	
getField, removeField, mailDoc, getNthFieldName, resetForm, print


	
numFields, pageNum, info, gotoNamedDest




File attachments aren’t supported when composing emails with mailDoc.

Util
	
printx, printd, printf



Color
	
transparent, black, white, red, green, blue, cyan, magenta, yellow, dark gray, gray, light gray



Event
	
value, rc, selStart, selEnd, willCommit, target, change, name, type



Field
	
getArray, checkThisBox, isBoxChecked, getItemAt, setItems, clearItems, setItems, insertItemAt, deleteItemAt, setAction, buttonImportIcon


	
name, value, textColor, fillColor, strokeColor, readonly, exportValues, currentValueIndices, multipleSelection, commitOnSelChange, numItems, hidden, editable, type, page, borderStyle, rotation, defaultValue, doNotSpellCheck, userName, alignment, rect, doc, required, display, calcOrderIndex, comb, doNotScroll, richText, multiline, fileSelect, password, charLimit




Various functions for formatting, validation, and calculation are also supported. You can read Adobe’s documentation to learn more about them.

Number Formatting
	
AFNumber_Format, AFNumber_Keystroke, AFMakeNumber



Percent Formatting
	
AFPercent_Format, AFPercent_Keystroke



Date Formatting
	
AFDate_Format, AFDate_FormatEx, AFDate_Keystroke, AFDate_KeystrokeEx, AFTime_Format, AFTime_FormatEx, AFTime_Keystroke



Special Formatting
	
AFSpecial_Format, AFSpecial_Keystroke, AFSpecial_KeystrokeEx



Simple Formatting
	
AFSimple, AFSimple_Calculate



Range Validation
	
AFRange_Validate



Debugging

If there is a problem with the JavaScript in a document, it’s a good idea to first check that the scripts do not contain syntax or logic errors. To see all JavaScript code that is used in a document, open Adobe Acrobat, click on Tools, select Prepare Form, click the small down arrow on the sidebar, and then choose All JavaScripts. The screenshots below shows how the All JavaScripts window appears in Adobe Acrobat.



JavaScript Logs

If JavaScript is enabled, PSPDFKit will log errors to the console if there’s a problem with the JavaScript code. We tried to make diagnostics as specific as possible to help you debug your documents more easily. For example, the following error message is logged if the script creator mistakenly writes this.getField(4);:

Catalog[58188:7996163] [JavaScript] [Error] Error: Argument name 'cName' has wrong type. Argument has type number, but expected string.



As you can read in the API documentation, getField’s cName argument must be a string.

In this other example, the script contains one API property that we currently don’t support:

Catalog[58188:7996163] [JavaScript] [Error] TypeError: undefined not callable (property 'notSupportedAPI' of [object global])


Learn More
	
JavaScript™ for Acrobat® API Reference


	
Developing Acrobat® Applications Using JavaScript™




























PDF SDK


iOS


Android


Web


MAUI


.NET for iOS & Android


Windows


Mac Catalyst


React Native


Flutter


Electron


Salesforce


SharePoint


Microsoft OneDrive


Microsoft Teams


visionOS

New






Server


GdPicture.NET SDK


Library for Java


Node.js


XtractFlow

Gen AI






Cloud


Document Engine


PDF API Tools


Login for API Tools





Solutions


Aviation


Construction


Education


Legal


Government


Financial


Healthcare


Intelligent Processing





Community



Developer Portal


Customer Portal


Technical Support


Blog


Newsletter





Company


About


Team


Careers

We’re hiring!



Security


Contact Us


Legal


Pricing


Partners







Try Our PDF Apps


















Copyright 2010-2024 PSPDFKit GmbH. All Rights Reserved.









