

PSPDFKit

Products

Solutions

Aviation

Construction

Education

Legal

Government

Financial

Healthcare

Life Sciences

Intelligent Document Processing:Automate workflows with an AI-based intelligent document processing (IDP) SDK

Documentation

Resources

Resources

Blog
Explore the latest insights, products, tutorials, & more

Releases
Learn about the latest product changes and features

Customer Stories
See how our customers drive success with our SDKs

Company News
Learn more about us, our team, and our culture

Webinars
Join the next live demo or watch on-demand webinars

Compare
See how we measure up to the competition

Get Help

Technical Support

Contact Sales

Customer Portal

Pricing

Get Started

Contact Sales

Contact Sales

Contact Sales

T

Web

Guides

Annotations

Comments and Replies

Adding Comments and Replies in Our JavaScript PDF Viewer

PSPDFKit provides a user interface (UI) for viewing, adding, and deleting comments in PDF documents. You can use comments to build collaborative workflows where multiple users can discuss specific sections of a document without leaving the viewer.

If you use PSPDFKit for Web Server-Backed, the component is available as of version 2020.1 and only if you’re using PSPDFKit Instant. For more information, see PSPDFKit Instant.

If you use PSPDFKit for Web Standalone, the component is available as of version 2023.3.

The difference between the two implementations is that with PSPDFKit for Web Server-Backed, users collaborate in real time and instantly see each others’ changes to a document. With PSPDFKit for Web Standalone, collaboration is asynchronous, which means that changes to a document made by a user aren’t instantly visible to the other users.

Licensing

Comments require a separate component in your PSPDFKit license. Without this included in your license, your app won’t be able to view, search, or add comments. Please contact our Sales team to add comments to your license.

If you’re a new customer, you can try comments without a license key. If you’re an existing customer, please ask our Sales team for a trial license if you’re interested.

Terminology

Before continuing, it’s helpful to first define some terminology as it relates to comments:

	
root annotation — This is the annotation to which all the comments in a single thread are linked.

	
comment thread — This is a group of comments with the same root annotation.

	
comment — This is a single comment added by any user.

Introduction

All comments are linked to their respective root annotations. The comments with the same root annotation are part of a single comment thread. There can be two types of root annotations:

	
MarkupAnnotation — You can start a new comment thread by selecting some text and clicking on in the markup annotation inline toolbar. In this case, the markup annotation created will act as a root annotation.

	
CommentMarkerAnnotation — A comment marker annotation is a new annotation that can be added anywhere in a PDF document and used to start comment threads.

Getting Started

By default, we don’t show the comment tool () in the main toolbar. This is because we want you to think about the workflow you want for your users and then decide whether or not you want to add it in the main toolbar. For example, if you want to allow the creation of comments from the main toolbar and disable sticky notes, you can do the following:

const toolbarItems = PSPDFKit.defaultToolbarItems
 .concat({ type: 'comment' }) // Add comment tool.
 .filter((item) => item.type !== 'note'); // Remove note tool.

PSPDFKit.load({
 // ...
 toolbarItems,
});

Note that you’ll have to add the comment tool in the main toolbar if you want to add comments using comment markers.

Adding a Comment

Since there are two types of root annotations, there are two ways you can add comments with the user interface.

From the Main Toolbar

This method involves the creation of CommentMarkerAnnotation before the creation of comments. To add a comment marker, you first need to click on the comment tool () in the main toolbar and then choose a destination on the page where you want to add your comment marker. Once you click on the destination, you’ll see a comment editor where you can add your first comment and start a new thread.

Using Markup Annotations

If you want to add a comment linked to a text annotation, you can do it using the markup annotation. To do this, create a new markup annotation and click on the comment tool () in the inline toolbar. Afterward, you’ll see a comment editor where you can add your first comment and start the new thread.

Note that, at the moment, we don’t support the addition of comments or comment marker annotations using programmatic APIs. This is something that might change in future.

Mentioning Users in a Comment

To mention a user in a comment, type @, followed by the user’s name, and select the user from the list.

Setting the List of Mentionable Users

To specify the users who can be mentioned in comments, follow these steps:

	
Create a MentionableUser object for each mentionable user with the following string type properties:

	
Required: name, id

	
Recommended: description

	
Optional: displayName, avatar

	
Create a list of the MentionableUser objects.

	
Pass the list to the mentionableUsers configuration property when you load PSPDFKit, or to the setMentionableUsers method after loading PSPDFKit.

The example below sets two mentionable users when loading PSPDFKit:

PSPDFKit.load({
 // ... Other configuration options.
 mentionableUsers: [{
 name: "Jane Doe",
 id: "jane_doe",
 description: "jane@doe.com"
 },
 {
 name: "John Doe",
 id: "john_doe",
 description: "john@doe.com"
 }]
})

The example below changes the list of mentionable users after PSPDFKit has loaded:

instance.setMentionableUsers([{
 name: "Jane Doe",
 id: "jane_doe",
 description: "jane@doe.com"
 },
 {
 name: "John Doe",
 id: "john_doe",
 description: "john@doe.com"
 }])

Getting the List of Users Mentioned in a Comment

To get the list of all users mentioned in a comment, call the getMentionedUserIds method on the comment object:

comment.getMentionedUserIds()

Notifying Mentioned Users

To notify users who are mentioned in a comment, add event listeners to the loaded instance.

One approach is to listen to the changes made by a specific user. To do this, listen to the comments.mention event and send notifications when the event is triggered. In the example below, the listener is triggered when the user john_doe adds or removes the someCommentObject comment. The listener won’t trigger if the changes are made by another user, even if those changes are visible to you:

instance.addEventListener("comments.mention", args: {
 comment: someCommentObject,
 modifications: [{
 userId: "john_doe",
 action: "ADDED" | "REMOVED"
 }]
 } => void)

Another approach is to listen to all changes to comments irrespective of who made them. Listen to the comments.create, comments.update, and comments.delete events to send notifications when comments are created, updated, or deleted. The example below adds separate event listeners for each of these three cases and determines the users mentioned in the affected comments. If you implement a way to keep track of users mentioned in different comments, you can determine if new user mentions have been added or deleted and send notifications to the affected users. This approach gives you control over the different ways comments can change (creation, update, deletion). The limitation of this approach is that changes by any user will trigger notifications; you cannot specify the users whose changes will trigger notifications. Using this approach, you can’t determine who made the last change to a comment, but you can use the comment.creatorName property to determine the user who created the comment:

instance.addEventListener("comments.create", createdComments => {
 const users = createdComments
 .get(0)
 .forEach(comment => comment.getMentionedUserIds())
})

instance.addEventListener("comments.update", updatedComments => {
 const users = updatedComments
 .get(0)
 .forEach(comment => comment.getMentionedUserIds())
})

instance.addEventListener("comments.delete", deletedComments => {
 const users = deletedComments
 .get(0)
 .forEach(comment => comment.getMentionedUserIds())
})

Deleting a Comment

You can delete an individual comment by clicking the delete button (). If all the comments of a thread are deleted, the corresponding root annotation is automatically deleted.

Comment editing isn’t supported in the current version.

Disabling the Comments UI

If your license includes comments but you want to disable letting the user view and add comments, you can set showComments to false in ViewState:

const initialViewState = new PSPDFKit.ViewState({
 showComments: false,
});

const instance = PSPDFKit.load({
 // ... other options
 initialViewState: initialViewState,
});

Comment Permissions

There might be situations where you want to disable the creation or deletion of individual comments based on some condition. To do this, you can define the isEditableComment function as a configuration option when initializing PSPDFKit. When the return value of the isEditableComment method is false for a comment, the comment can no longer be deleted by the user. Similarly, isEditableComment can be used to determine whether or not a user can reply to existing threads:

PSPDFKit.load({
 // ...
 isEditableComment: (comment) => {
 return comment.rootId !== rootAnnotationId;
 },
});

In the above example, all the comments that have a root annotation with an id other than rootAnnotationId will be editable.

For every comment thread, isEditableComment receives a temporary draft comment with pageIndex=null. The rootId of this draft comment points to the root annotation of the comment thread. If isEditableComment returns false, the user won’t be able to add comments in that comment thread:

PSPDFKit.load({
 // ...
 isEditableComment: (comment) => {
 return comment.pageIndex !== null;
 },
});

In the above example, a user can’t add a comment in any comment thread.

In case you want to set the permissions after a PSPDFKit instance has been created, you can use instance.setIsEditableComment:

PSPDFKit.load(options).then((instance) => {
 instance.setIsEditableComment((comment) => {
 return comment.rootId !== rootAnnotationId;
 });
});

Customizing a Comment Block

You can customize the look of a comment block by using CSS. Please make sure you’re using the public class names starting with PSPDFKit-, as other class names might change in the future and break your application.

For example, if you want to customize the border-radius of avatars, you can do that by writing the following CSS:

.PSPDFKit-Comment-Avatar {
 border-radius: 6px;
}

You can also show avatars in comment blocks by setting a custom renderer:

PSPDFKit.load({
 customRenderers: {
 CommentAvatar: (comment: Comment) => ({
 node: element,
 append: false, // This should always be `false` in this case.
 }),
 },
});

If you want to change the avatar after the instance has been created, you can use setCustomRenderers.

Responsive UI

The UI adapts to the screen size of your browser. In the case of large screens, comment threads are displayed in a sidebar on the right-hand side of a document and are always visible, while on smaller screens, the threads are only visible after you tap on a root annotation.

Rich Text Comments

Rich text editing is supported in comments. Using the UI, you can select parts of a comment and do the following:

	
Make parts of the comment bold, italic, or underlined.

	
Change the color and the background color of parts of the comment.

	
Add hyperlinks to the comment.

PDF SDK

iOS

Android

Web

MAUI

.NET for iOS & Android

Windows

Mac Catalyst

React Native

Flutter

Electron

Salesforce

SharePoint

Microsoft OneDrive

Microsoft Teams

visionOS

New

Server

GdPicture.NET SDK

Library for Java

Node.js

XtractFlow

Gen AI

Cloud

Document Engine

PDF API Tools

Login for API Tools

Solutions

Aviation

Construction

Education

Legal

Government

Financial

Healthcare

Intelligent Processing

Community

Developer Portal

Customer Portal

Technical Support

Blog

Newsletter

Company

About

Team

Careers

We’re hiring!

Security

Contact Us

Legal

Pricing

Partners

Try Our PDF Apps

Copyright 2010-2024 PSPDFKit GmbH. All Rights Reserved.

